2016/17 MATH2230B/C Complex Variables with Applications Suggested Solution of Selected Problems in HW 3
 Sai Mang Pun, smpun@math.cuhk.edu.hk
 P. 1475 and P. 1703 will be graded

All the problems are from the textbook, Complex Variables and Application (9th edition).

1 P. 133

For the functions f and contours C in Exercise 8, use parametric representations for C or legs of C to evaluate

$$
\int_{C} f(z) \mathrm{d} z
$$

8. $f(z)$ is the principal branch

$$
z^{a-1}=\exp [(a-1) \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the power function z^{a-1}, where a is a nonzero real number and C is the positively oriented circle of radius R about the origin.

Solution. The parametric representations for the contour is

$$
C=\left\{z=R e^{i \theta}:-\pi \leq \theta \leq \pi\right\} .
$$

Then, one can obtain the integral as follows

$$
\begin{aligned}
\int_{C} f(z) \mathrm{d} z & =\int_{-\pi}^{\pi} e^{(a-1)(\ln R+i \theta)} \frac{d}{d \theta}\left(R e^{i \theta}\right) \mathrm{d} \theta \\
& =i R\left(e^{(a-1) \ln R}\right) \int_{-\pi}^{\pi} e^{i a \theta} \mathrm{~d} \theta \\
& =\frac{R^{a}}{a} \int_{-\pi}^{\pi} e^{i a \theta} \mathrm{~d} i a \theta \\
& =\frac{R^{a}}{a}\left(e^{i a \pi}-e^{-i a \pi}\right) \\
& =\frac{2 i R^{a}}{a} \sin a \pi
\end{aligned}
$$

11. Let C denote the semicircular path

$$
C=\{z:|z|=2, \operatorname{Re}(z) \geq 0\} .
$$

Evaluate the integral of the function $f(z)=\bar{z}$ along C using the parametric representation
(a) $z=2 e^{i \theta} \quad\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$;
(b) $z=\sqrt{4-y^{2}}+i y \quad(-2 \leq y \leq 2)$.

Solution. (a) The parametric representation of C is

$$
C=\left\{z=2 e^{i \theta}:-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right\} .
$$

Hence, the integral can be calculated as follows:

$$
\begin{aligned}
\int_{C} f(z) \mathrm{d} z & =\int_{C} \bar{z} \mathrm{~d} \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 e^{-i \theta} \frac{d}{d \theta}\left(2 e^{i \theta}\right) \mathrm{d} \theta \\
& =4 i \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~d} \theta \\
& =4 \pi i
\end{aligned}
$$

(b) The parametric representation of C is

$$
C=\left\{z=\sqrt{4-y^{2}}+i y:-2 \leq y \leq 2\right\} .
$$

Then, the integral can be calculated as follows:

$$
\begin{aligned}
\int_{C} f(z) \mathrm{d} z & =\int_{C} \bar{z} \mathrm{~d} \theta \\
& =\int_{-2}^{2}\left(\sqrt{4-y^{2}}-i y\right) \frac{d}{d y}\left(\sqrt{4-y^{2}}+i y\right) \mathrm{d} y \\
& =\int_{-2}^{2}\left(\sqrt{4-y^{2}}-i y\right)\left(-\frac{y}{\sqrt{4-y^{2}}}+i\right) \mathrm{d} y \\
& =i \int_{-2}^{2}\left(\sqrt{4-y^{2}}+\frac{y^{2}}{\sqrt{4-y^{2}}}\right) \mathrm{d} y \\
& =4 i \int_{-2}^{2}\left(\frac{1}{\sqrt{4-y^{2}}}\right) \mathrm{d} y \\
& =4 \pi i
\end{aligned}
$$

$2 \quad$ P. 139

5. Let C_{R} be the circle $|z|=R(R>1)$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} \mathrm{~d} z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then use l'Hospital's rule to show that the value of this integral tends to zero as R tends to infinity.

Proof. We take the principal branch of the logarithmic function and apply the following inequality to obtain the desired estimate:

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} \mathrm{~d} z\right| \leq \int_{C_{R}}\left|\frac{\log z}{z^{2}}\right| \mathrm{d} z
$$

Further, we have, by the parametric representation of C

$$
\begin{aligned}
\left|\int_{C_{R}} \frac{\log z}{z^{2}} \mathrm{~d} z\right| & \leq \int_{-\pi}^{\pi} \frac{|\ln R+i \theta|}{R^{2}}\left|i R e^{i \theta}\right| \mathrm{d} \theta \\
& \leq \int_{-\pi}^{\pi} \frac{\ln R+\pi}{R} \\
& \leq 2 \pi\left(\frac{\ln R+\pi}{R}\right)
\end{aligned}
$$

By the l'Hospital's rule, one can have

$$
\lim _{R \rightarrow \infty} \frac{\ln R+\pi}{R}=\lim _{R \rightarrow \infty} \frac{1}{R}=0
$$

Hence, the integral tends to zero as $R \rightarrow \infty$.
6. Let C_{ρ} denote a circle $|z|=\rho(0<\rho<1)$ oriented in the counterclockwise direction and suppose that $f(z)$ is analytic in the disk $|z| \leq 1$. Show that if $z^{-1 / 2}$ represents any particular branch of that power of z, then there is a nonnegative constant M independent of ρ such that

$$
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) \mathrm{d} z\right| \leq 2 \pi M \sqrt{\rho}
$$

Thus show that the value of the integral here approaches 0 as ρ tends to 0 .
Proof. Since $f(z)$ is analytic in the disk $|z| \leq 1$, then it is continuous and bounded. There exists a positive constant $M>0$ such that

$$
|f(z)| \leq M \quad \forall|z| \leq 1
$$

Then, the estimate can be obtained as follows

$$
\begin{aligned}
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) \mathrm{d} z\right| & \leq \int_{-\pi}^{\pi} \frac{1}{\sqrt{\rho}}\left|e^{-i \theta / 2} i \rho e^{i \theta} f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta \\
& \leq 2 \pi M \sqrt{\rho}
\end{aligned}
$$

Thus, the value of the integral approaches 0 as $\rho \rightarrow 0$.

$3 \quad$ P. 147

5. Show that

$$
\int_{-1}^{1} z^{i} \mathrm{~d} z=\frac{1+e^{-\pi}}{2}(1-i)
$$

where the integrand denotes the principal branch

$$
z^{i}=\exp (i \log z) \quad(|z|>0 .-\pi<\operatorname{Arg} z<\pi)
$$

of z^{i} and where path of integration is any contour from $z=-1$ to $z=1$ that except for its end points lies above the real axis.

Proof. Note that $z^{i}=e^{i \log z}=e^{-\theta} e^{i \ln r}$ when the principal branch of the logarithmic function is selected. The parametric representation

$$
C=\{z=x:-1 \leq x \leq 1\}
$$

is given, then we can calculate the integral as follows

$$
\begin{aligned}
\int_{-1}^{1} z^{i} \mathrm{~d} z & =\int_{-1}^{0} z^{i} \mathrm{~d} z+\int_{0}^{1} z^{i} \mathrm{~d} z \\
& =\int_{-1}^{0} e^{-\pi} e^{i \ln (-x)} \mathrm{d} x+\int_{0}^{1} e^{0} e^{i \ln x} \mathrm{~d} x \\
& =\int_{0}^{1} e^{-\pi} e^{i \ln x} \mathrm{~d} x+\int_{0}^{1} e^{i \ln x} \mathrm{~d} x \\
& =\left(1+e^{-\pi}\right) \int_{0}^{1} e^{i \ln x} \mathrm{~d} x \\
& =\left(1+e^{-\pi}\right) \int_{0}^{1}(\cos (\ln x)+i \sin (\ln x)) \mathrm{d} x \\
& =\left(1+e^{-\pi}\right) \int_{-\infty}^{0} e^{y}(\cos y+i \sin y) \mathrm{d} y \quad(y=\ln x) \\
& =\left(1+e^{-\pi}\right) \int_{-\infty}^{0} e^{y(1+i)} \mathrm{d} y \\
& =\frac{1+e^{-\pi}}{1+i} \\
& =\frac{1+e^{-\pi}}{2}(1-i) .
\end{aligned}
$$

$4 \quad$ P. 159

2. Let C_{1} denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1, y= \pm 1$ and let C_{2} be the positively oriented circle $|z|=4$. With the aid of the corollary in Sec. 53, point out why

$$
\int_{C_{1}} f(z) \mathrm{d} z=\int_{C_{2}} f(z) \mathrm{d} z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$;
(b) $f(z)=\frac{z+2}{\sin (z / 2)}$;
(a) $f(z)=\frac{z}{1-e^{z}}$.

Solution. Try to explain that $f(z)$ is analytic inside the area between C_{1} and C_{2}.
(a) When $z \neq \pm \frac{\sqrt{3}}{3} i, f(z)$ is analytic.
(b) When $z \neq 2 n \pi, n \in \mathbb{Z}, f(z)$ is analytic.
(c) When $z \neq 0, f(z)$ is analytic.
4. Use the following method to derive the integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=\frac{\sqrt{\pi}}{2} e^{-b^{2}} \quad(b>0)
$$

(a) Show that the sum of the integrals of $e^{-z^{2}}$ along the lower and upper horizontal legs of the rectangular path $\{x= \pm a, y=0$ or $y=b\}$ can be written

$$
2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x
$$

and that the sum of the integrals along the vertical legs on the right and left can be written

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} x-i e^{-a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} y
$$

Thus with the aid of the Cauchy-Coursat theorem, show that

$$
\int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y
$$

(b) By accepting the fact that

$$
\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

and observing that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y\right| \leq \int_{0}^{b} e^{y^{2}} \mathrm{~d} y
$$

obtain the desired integration formula by letting a tend to infinity in the equation at the end of part (a).

Proof. (a) The sum of the integrals of $e^{-z^{2}}$ along the lower and upper horizontal legs of the rectangular path can be written as

$$
\int_{-a}^{a} e^{-x^{2}} \mathrm{~d} x+\int_{a}^{-a} e^{-(x+i b)^{2}} \mathrm{~d} x
$$

Simplify the above expression to obtain

$$
\begin{aligned}
2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{b^{2}} \int_{a}^{-a} e^{-x^{2}} e^{-i 2 b x} \mathrm{~d} x & =2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{b^{2}} \int_{a}^{-a} e^{-x^{2}}(\cos 2 b x-i \sin 2 b x) \mathrm{d} x \\
& =2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{b^{2}} \int_{a}^{-a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x \\
& =2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x
\end{aligned}
$$

Note that $e^{-x^{2}} \sin 2 b x$ is odd function and $e^{-x^{2}} \cos 2 b x$ is even function. Similarly, we can obtain the sum of integrals of $e^{-z^{2}}$ along the vertical legs on the right and left

$$
\int_{0}^{b} i e^{-(a+i y)^{2}} \mathrm{~d} y+\int_{b}^{0} i e^{-(-a+i y)^{2}} \mathrm{~d} y
$$

Simplify the expression, we have:

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} x-i e^{-a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} y=2 e^{-a^{2}} \int_{0}^{b} e^{y^{2}} \sin 2 a y .
$$

By the Cauchy-Goursat theorem, the integral of $e^{-z^{2}}$ along the rectangle is zero. It implies that

$$
\begin{aligned}
& 2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x+2 e^{-a^{2}} \int_{0}^{b} e^{y^{2}} \sin 2 a y=0 \\
& \int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y
\end{aligned}
$$

(b) If we accept the fact that

$$
\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

and observe that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y\right| \leq \int_{0}^{b} e^{y^{2}} \mathrm{~d} y \leq b e^{b^{2}}
$$

Then letting $a \rightarrow+\infty$, we have

$$
\left|e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y\right| \leq b e^{-a^{2}} \rightarrow 0
$$

Hence, we have the following formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=\frac{\sqrt{\pi}}{2} e^{-b^{2}} \quad(b>0)
$$

$5 \quad$ P. 170

2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $g(z)=\frac{1}{z^{2}+4}$;
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.

Solution. (a) Let $f(z)=\frac{1}{z+2 i}$, then by Cauchy's integral formula, we have

$$
\int_{C} g(z) \mathrm{d} z=\int_{C} \frac{f(z)}{z-2 i} \mathrm{~d} z=2 \pi i \frac{1}{2 i+2 i}=\frac{\pi}{2}
$$

(b) Let $f(z)=\frac{1}{(z+2 i)^{2}}$, then by Cauchy's integral formula, we have

$$
\int_{C} g(z) \mathrm{d} z=\int_{C} \frac{f(z)}{(z-2 i)^{2}} \mathrm{~d} z=2 \pi i f^{\prime}(2 i)=\frac{\pi}{16}
$$

where

$$
f^{\prime}(z)=-\frac{2}{(z+2 i)^{3}}
$$

3. Let C be the circle $|z|=3$ described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} \mathrm{~d} s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
Proof. Let $f(s)=2 s^{2}-s-s$. By Cauchy's integral formula, we have

$$
g(2)=\int_{C} \frac{f(s)}{s-2} \mathrm{~d} s=2 \pi i f(2)=8 \pi i
$$

The value of $g(z)$ is 0 when $|z|>3$ since the function $\frac{f(s)}{s-z}$ is analytic inside and on the contour C and by the Cauchy-Goursat theorem, the conclusion holds.
4. Let C be any simple closed contour described in the positive sense in the z plane and write

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} \mathrm{~d} s
$$

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside C.
Proof. By the Cauchy's integral formula, one can obtain

$$
g(z)=\pi i f^{\prime \prime}(z)=6 \pi i z, \quad \forall z \text { inside } C
$$

where $f(s)=s^{3}+2 s$. For any z outside $C, g(z)=0$ by the Cauchy-Goursat theorem.

